This paper presents the first successful attempt to integrate crystalline high-K gate dielectrics into a virtually damage-free damascene metal gate process by means of front-end chemical mechanical planarization. Process details as well as initial electrical characterization results on fully functional gate Gd$_2$O$_3$ dielectric MOSFETs with equivalent oxide thickness (EOT) down to 1nm are discussed.

Keywords: chemical mechanical planarization, CMP, high-k gate dielectrics, metal gate MOSFET, damascene metal gate technology

1. Introduction

Ever increasing gate leakages through ultra-scaled SiO$_2$ gate dielectrics have led to extensive investigation of alternative materials with higher dielectric permittivity (high-K) in order to extend the unprecedented growth of IC complexity of the last four decades into the future.

Recently, very promising properties of epitaxially grown, crystalline rare-earth metal-oxides have been reported [1] and the integration of Pr$_2$O$_3$ dielectric in a conventional polysilicon CMOS process was successfully demonstrated [2]. However, high temperature annealing [3] and aggressive reactive ion etching (RIE) was found to degrade the initial quality of the sensitive high-K gate stack [2]. In order to minimize process induced oxide damage (PIOD), we have integrated crystalline high-K dielectrics into a virtually damage-free replacement gate process [4, 5]. For the first time, fully functional metal gate MOSFETs with crystalline Gd$_2$O$_3$ dielectric have been fabricated by means of front-end chemical mechanical planarization (CMP) in a “gentle” damascene metal gate technology.

2. Device Fabrication

The basic process concept of the damascene metal gate technology is shown in Fig. 1. Processing is performed on 4 inch p-type Si (100) wafers. Initially, dummy gate stacks are formed by consecutive deposition of silicon nitride and polysilicon, lithography and reactive ion etching (RIE) (Fig. 2a), followed by self-aligned S/D ion implantation. Next, the CVD alignment-oxide is deposited and RTA anneals at 1000°C are performed to activate S/D implants.
Figure 1. Basic concept of the damascene metal gate process: A so-called ‘‘dummy gate’’ acts as a placeholder for the final gate stack (1) After having performed all aggressive process steps as RIE and high temperature anneals, the dummy gate can be removed by leaving a self-aligned imprint of the gate stack in the oxide. (2) Subsequently, the high-K gate dielectric and metal gate are deposited. (3) The initial material quality of the crystalline high-K gate dielectric is largely preserved damascene metal gate processing.

The oxide is planarized by CMP down to the gate level using a atomic force microscope-based ex-situ endpoint detection. The dummy gates are removed completely by wet chemical etching, leaving a self-aligned imprint of the gate stack on the oxide layer (Fig.2b).

Figure 2. Atomic force microscopy (AFM) image of a dummy gate structure (a) and a self-aligned imprint of the gate stack in the alignment oxide (b).

Subsequently, crystalline Gd$_2$O$_3$ layers of 5.3 nm and 13.5 nm physical thickness are grown by molecular beam epitaxy (MBE) with smooth surface topography and good leakage currents as evident from AFM and Conductive-AFM measurements (Fig. 3). In addition, wafers with conventional SiO$_2$ are fabricated as a reference. Tungsten is deposited on top of the gate dielectrics and CMP is used to pattern the damascene metal gates. Standard back-end processing completes the fabrication.
3. Results and Discussion

The fabricated devices with Gd₂O₃ gate dielectric and tungsten gate electrode are fully functional. CV measurements on Gd₂O₃ capacitors give a dielectric constant of 10.4, corresponding to EOTs of 1.9 nm and 5.1 nm respectively. Leakages are below 1×10^{-1} A/cm² for the 1.9 nm Gd₂O₃ and 1×10^{-3} A/cm² for the 5.1 nm, respectively, (Fig. 4), consistent with leakage requirements set by the ITRS [6]).

Figure 5. Gate leakage currents of 1.9 nm and 5.1 nm metal gate Gd₂O₃ pMOS capacitors (gate injection, substrate in accumulation).

The Gd₂O₃ gate dielectric nMOSFETs show proper transistor behavior (Fig. 6 and 7).

Figure 6. Output characteristics of a metal gate Gd₂O₃ nMOSFET.
Note that extremely low hysteresis of less than 30 mV is observed in the subVt characteristics (Fig. 7), which is a substantial improvement when compared to conventionally integrated high-K oxides [7]. In the case of process-damaged high-K oxides, large hysteresis effects with Vt-shifts of more than 300 mV have been observed which could be related to a large susceptibility to build-up charge trapping sites [7]. The subVt swing of approximately 130 mV/dec indicates high interface state densities. Charge pumping (CP) measurements revealed trap densities of $2.3 \times 10^{12} \text{ eV}^{-1} \text{cm}^{-2}$, consistent with the degraded subVt swing. However, only slightly reduced values of $1.8 \times 10^{12} \text{ eV}^{-1} \text{cm}^{-2}$ are obtained for the SiO$_2$ reference devices which puts in question the effectiveness of the forming gas anneal when using tungsten gates. Energy resolved CP measurements on Gd$_2$O$_3$ nMOS devices showed that most of the interface traps are located in the upper half of the band gap (Fig. 8).

Effective mobilities of 130 cm2/Vs have been measured for the Gd$_2$O$_3$ MOSFETs as shown in Fig. 9.
Figure 9. Measured effective electron mobilities of damascene metal gate Gd$_2$O$_3$ nMOSFETs (EOT=5.1 nm).

Compared to SiO$_2$ references this corresponds to a reduction of approx. 40% at the same effective electric field. We suspect that the acceptor-type interface states significantly degrade mobility due to Coulomb-scattering.

4. Conclusion

We have successfully integrated crystalline Gd$_2$O$_3$ with EOT of 1.9 nm in a damascene metal gate process by means of chemical mechanical planarization. Since the harsh processing is done prior to high-K deposition, PIOD-effects are minimized and the initial material quality of the crystalline high-K gate dielectric is largely preserved, so that the progress in high-K material engineering can be monitored directly at the device level.

Acknowledgements

This work was partially funded by the German Federal Ministry of Education and Research (BMBF) under the KrisMOS project (01M3142C) and the MEGA EPOS project (13N9259) as well.

References